Double layer capcacitance comparison
begin
using Pkg
Pkg.activate(joinpath(@__DIR__, "..", "docs"))
using Revise
using PlutoUI
using VoronoiFVM
using ExtendableGrids
using LinearAlgebra
using NLsolve
using Unitful
using LessUnitful
using LessUnitful.MoreUnitful
using LiquidElectrolytes
using Test
if isdefined(Main, :PlutoRunner)
using CairoMakie
using GridVisualize
using Colors
end
end
1. Intro
This code implements the model described in Müller, R., Fuhrmann, J., & Landstorfer, M. (2020). Modeling polycrystalline electrode-electrolyte interfaces: The differential capacitance. Journal of The Electrochemical Society, 167(10), 106512
The code is part of the LiquidElectrolytes.jl package.
Equation numbers refer to the paper.
Concentrations are given in number densities, and calculations are done in mole fractions.
If not stated otherwise, all calculations and calculation results are in coherent SI units.
2. Model data
EquilibriumData
begin
"""
EquilibriumData
Data structure containg data for equilibrum calculations
"""
Base.@kwdef mutable struct EquilibriumData
N::Int64 = 2 # number of ionic species
T::Float64 = 298.15 * ufac"K" # temperature
kT::Float64 = ph"k_B" * T # temperature
p_ref::Float64 = 1.0e5 * ufac"Pa" # referece pressure
pscale::Float64 = 1.0 * ufac"GPa" # pressure scaling nparameter
E_ref::Float64 = 0.0 * ufac"V" # reference voltage
n0_ref::Float64 = 55.508 * ph"N_A" / ufac"dm^3" # solvent molarity
v0::Float64 = 1 / n0_ref # solvent molecule volume
χ::Float64 = 15 # dielectric susceptibility
z::Vector{Int} = [-1, 1] # ion charge numbers
κ::Vector{Int} = [10, 10] # ion solvation numbers
molarity::Float64 = 0.1 * ph"N_A" / ufac"dm^3"
n_E::Vector{Float64} = [molarity, molarity] # bulk ion number densities
μ_e::Vector{Float64} = [0.0] # grain facet electron chemical potential
e::Float64 = ph"e"
ε_0::Float64 = ph"ε_0"
v::Vector{Float64} = derived(κ, v0, n_E, T).v # ion volumes
y_E::Vector{Float64} = derived(κ, v0, n_E, T).y_E # bulk ion mole fractions
y0_E::Float64 = derived(κ, v0, n_E, T).y0_E # bulk solvent mole fraction
U_T::Float64 = derived(κ, v0, n_E, T).U_T # Temperature voltage k_BT/e0
end
function EquilibriumData(electrolyte::AbstractElectrolyteData)
return EquilibriumData(;
N = electrolyte.nc,
T = electrolyte.T,
p_ref = electrolyte.p_bulk,
pscale = electrolyte.pscale,
E_ref = electrolyte.ϕ_bulk,
n0_ref = ph"N_A" / electrolyte.v0,
χ = electrolyte.ε - 1.0,
z = electrolyte.z,
κ = electrolyte.κ,
molarity = ph"N_A" * electrolyte.c_bulk[1],
n_E = ph"N_A" * electrolyte.c_bulk
)
end
end
EquilibriumData
debyelength(data)
$$L_{Debye}=\sqrt{ \frac{(1+χ)ε_0k_BT}{e^2n_E}}$$
LiquidElectrolytes.debyelength(data::EquilibriumData) = sqrt((1 + data.χ) * data.ε_0 * data.kT / (ph"e"^2 * data.n_E[1]))
debyelength(EquilibriumData(molarity=0.01ph"N_A"/ufac"dm^3"))|>u"nm"
1.9422608647967765 nm
set_molarity!(data,M)
function set_molarity!(data::EquilibriumData, M_E)
n_E = M_E * ph"N_A" / ufac"dm^3"
data.molarity = n_E
return data.n_E = fill(n_E, data.N)
end
set_molarity! (generic function with 1 method)
dlcap0(data)
Double layer capacitance at \(φ=0\)
$$C_{dl,0}=\sqrt{\frac{2(1+χ) ε_0e^2 n_E}{k_BT}}$$
LiquidElectrolytes.dlcap0(data::EquilibriumData) = sqrt(2 * (1 + data.χ) * ph"ε_0" * ph"e"^2 * data.n_E[1] / (ph"k_B" * data.T));
Check with Bard/Faulkner: the value must be 22.8 μF cm^-2
let
data=EquilibriumData()
set_molarity!(data,0.01)
data.χ=78.49-1
cdl0=dlcap0(data)|>u"μF/cm^2"
@assert cdl0 ≈ 22.84669184882525u"μF/cm^2"
end
Species indices
begin
const iφ = 1
const ip = 2
const iA = 1
const iC = 2
end;
3. Model equations
Mole fractions
Equilibrium expression for mole fractions (\(α≥0\)) (16)
$$y_α(φ,p)=y_α^E\exp\left(\frac{-z_αe}{k_BT}(φ- φ^E)-\frac{v_α}{k_BT}(p-p^E)\right)$$
y_α(φ,p,α,data)
Ion molar fractions
function y_α(φ, p, α, data)
η_φ = data.z[α] * data.e * (φ - data.E_ref)
η_p = data.v[α] * (p * data.pscale - data.p_ref)
return data.y_E[α] * exp(-(η_φ + η_p) / (data.kT))
end;
y0(p,data)
Solvent molar fraction
y0(p, data) = data.y0_E * exp(-data.v0 * (p * data.pscale - data.p_ref) / (data.kT));
Poisson equation
Poisson equation (32a)
$$-∇⋅(1+χ)ε_0∇φ = q(φ,p)$$
poisson_flux!(f,u,edge,data)
VoronoiFVM flux function for left hand side of Poisson equation
function poisson_flux!(f, u, edge, data)
return f[iφ] = (1.0 + data.χ) * data.ε_0 * (u[iφ, 1] - u[iφ, 2])
end;
Space charge expression
Solvated ion volumes:
$$ v_α=(1+κ_α)v_0$$
Incompressibility condition (14)
$$\begin{aligned} 1&=∑\limits_α v_αn_α= n ∑\limits_α v_α y_α\\ n&=\frac1{∑\limits_α v_α y_α} \end{aligned}$$
Space charge
$$\begin{aligned} q(φ,p)&=e∑\limits_α z_αn_α = ne∑\limits_α z_αy_α\\ &=e\frac{∑\limits_α z_αy_α(\phi,p)}{∑\limits_α v_α y_α(\phi,p)} \end{aligned}$$
function spacecharge(φ, p, data)
y = y0(p, data)
sumyz = zero(eltype(p))
sumyv = data.v0 * y
for α in 1:(data.N)
y = y_α(φ, p, α, data)
sumyz += data.z[α] * y
sumyv += data.v[α] * y
end
return data.e * sumyz / sumyv
end
spacecharge (generic function with 1 method)
Sum of mole fractions
function ysum(φ, p, data)
sumy = y0(p, data)
for α in 1:(data.N)
sumy += y_α(φ, p, α, data)
end
return sumy
end
ysum (generic function with 1 method)
spacecharge_and_ysum!(f,u,node,data)
VoronoiFVM reaction function. This assumes that terms are on the left hand side. In addition to the space charge it calculates the residuum of the definition of \(y_\alpha\) (32b):
$$∑_α y_α(φ,p)=1$$
However, direct usage of this equation leads to slow convergence of Newton's method. So we use
$$\log\left(∑_α y_α(φ,p)\right)=0$$
instead.
function spacecharge_and_ysum!(f, u, node, data)
φ = u[iφ]
p = u[ip]
f[iφ] = -spacecharge(φ, p, data)
return f[ip] = log(ysum(φ, p, data)) # this behaves much better with Newton's method
end;
update_derived!(data)
Update derived data in data record.
Calculate bulk mole fractions from incompressibiltiy:
$$\begin{aligned} ∑\limits_αv_αn_α^E&=1\\ n_0^E&=\frac1{v_0}\left(1-∑\limits_{α>0}v_αn_α^E\right)\\ n^E&=\frac1{v_0}\left(1-∑\limits_{α>0}v_αn_α^E\right)+ ∑\limits_{α>0}n_α^E\\ &=\frac1{v_0}\left(1-∑\limits_{α>0}(v_α-v_0)n_α^E\right)\\ &=\frac1{v_0}\left(1-∑\limits_{α>0}((1+ κ_α)v_0-v_0)n_α^E\right)\\ &=\frac1{v_0}\left(1-∑\limits_{α>0}κ_αv_0n_α^E\right)\\ &=\frac1{v_0}-∑\limits_{α>0}κ_αn_α^E\\ y_α^E&=\frac{n_α^E}{n^E} \end{aligned}$$
function derived(κ, v0, n_E, T)
c0 = 1 / v0
barc = 0.0
v = (1.0 .+ κ) .* v0
N = length(κ)
for α in 1:N
barc += n_E[α]
c0 -= n_E[α] * (1 + κ[α])
end
barc += c0
y_E = n_E / barc
y0_E = c0 / barc
U_T = ph"k_B" * T / ph"e"
return (; v, y_E, y0_E, U_T)
end;
begin
function update_derived!(data::EquilibriumData)
(; κ, v0, n_E, T) = data
return data.v, data.y_E, data.y0_E, data.U_T = derived(κ, v0, n_E, T)
end
update_derived!(::ElectrolyteData) = nothing
end
update_derived! (generic function with 2 methods)
let
data = EquilibriumData()
set_molarity!(data, 0.01)
update_derived!(data)
sumyz = 0.0
sumyv = data.y0_E * data.v0
sumy = data.y0_E
for α in 1:data.N
v = (1.0 + data.κ[α]) * data.v0
sumyz += data.y_E[α] * data.z[α]
sumyv += data.y_E[α] * v
sumy += data.y_E[α]
end
@assert sumy ≈ 1.0
end
Bulk boundary condition
From (32d):
$$∇ φ\to 0$$
we choose homogeneous Neumann boundary conditions
$$\partial_n φ=0$$
which do not need any implementation.
Electrode boundary condition
See (32c) !!! bug in paper
$$φ|_{Σ_i}=\frac{1}{e} \mu_{e,i}- (E-E^{ref})$$
φ_Σ(ifacet,data,E)
Calculate potential boundary value for each facet from applied voltage E
.
φ_Σ(ifacet, data, E) = data.μ_e[ifacet] / data.e - (E - data.E_ref);
4. System setup and solution
create_equilibrium_system(grid,data)
Create equlibrium system, enable species and apply zero voltage
function create_equilibrium_system(
grid,
data::EquilibriumData = EquilibriumData();
Γ_bulk = 0
)
update_derived!(data)
sys = VoronoiFVM.System(
grid;
data = data,
flux = poisson_flux!,
reaction = spacecharge_and_ysum!,
species = [iφ, ip]
)
if Γ_bulk > 0
boundary_dirichlet!(sys, iφ, Γ_bulk, 0.0)
end
return apply_voltage!(sys, 0)
end;
apply_voltage!(sys,E)
Apply voltage E
to system.
function apply_voltage!(sys, E)
data = sys.physics.data
nbc = num_bfaceregions(sys.grid)
nfacets = length(data.μ_e)
@assert nbc > nfacets
for ifacet in 1:nfacets
boundary_dirichlet!(sys, iφ, ifacet, φ_Σ(ifacet, data, E))
end
return sys
end;
5. Postprocessing
calc_φ(sol,sys)
Obtain electrostatic potential from solution
calc_φ(sol, sys) = sol[iφ, :];
calc_p(sol,sys)
Obtain pressure from solution
calc_p(sol, sys) = sol[ip, :] * sys.physics.data.pscale;
c_num!(c,φ,p, data)
Calculate number concentration at discretization node
$$ n_α=ny_α$$
function c_num!(c, φ, p, data)
y = y0(p, data)
sumyv = data.v0 * y
for α in 1:(data.N)
c[α] = y_α(φ, p, α, data)
sumyv += c[α] * data.v[α]
end
return c ./= sumyv
end;
function c0_num!(c, φ, p, data)
y = y0(p, data)
sumyv = data.v0 * y
for α in 1:(data.N)
c[α] = y_α(φ, p, α, data)
sumyv += c[α] * data.v[α]
end
return y / sumyv
end;
calc_cnum(sol,sys)
Obtain ion number densities from system
function calc_cnum(sol, sys)
data = sys.physics.data
grid = sys.grid
nnodes = num_nodes(grid)
conc = zeros(data.N, nnodes)
for i in 1:nnodes
@views c_num!(conc[:, i], sol[iφ, i], sol[ip, i], data)
end
return conc
end;
function calc_c0num(sol, sys)
data = sys.physics.data
grid = sys.grid
nnodes = num_nodes(grid)
c0 = zeros(nnodes)
conc = zeros(data.N)
for i in 1:nnodes
@views c0[i] = c0_num!(conc, sol[iφ, i], sol[ip, i], data)
end
return c0
end;
calc_cmol(sol,sys)
Obtain ion molarities (molar densities in mol/L) from system
calc_cmol(sol, sys) = calc_cnum(sol, sys) / (ph"N_A" * ufac"mol/dm^3");
calc_c0mol(sol, sys) = calc_c0num(sol, sys) / (ph"N_A" * ufac"mol/dm^3");
calc_QBL(sol,sys)
Obtain boundary layer charge (35)
$$Q^{BL}(E)=-\frac{1}{Σ} ∫_{Ω_E} q dx$$
calc_QBL(sol, sys) = VoronoiFVM.integrate(sys, spacecharge_and_ysum!, sol)[iφ, 1]
calc_QBL (generic function with 1 method)
Poly surface charge (34)
$$Q_s(E)= ∑_i s_i \hat Q_s(E-E^{ref} + \frac1{e}\mu_{e,i})$$
Single surface charge (26)
$$\hat Q_s = \frac{∑_\alpha z_αey_{s,α} +\sum_α \sum_β ν_{αβ}z_αey_{s,β}}{a_V^{ref}+ ∑_{α} a_α^{ref}z_αey_{s,α}} $$
We assume that there are no surface reactions, so we assume \(\hat Q_s=0\) and \(Q_s=0\).
6. Solution scenarios
dlcapsweep_equi(sys)
Calculate double layer capacitance. Return vector of voltages V
and vector of double layer capacitances C
.
function dlcapsweep_equi(
sys; vmax = 2 * ufac"V", nsteps = 21, δV = 1.0e-3 * ufac"V",
molarity = nothing,
verbose = false
)
if !isnothing(molarity)
error("The molarity kwarg of dlcapsweep_equie has been removed. Pass the molarity information with set_molarity!.")
end
data = sys.physics.data
update_derived!(data)
apply_voltage!(sys, 0)
c = VoronoiFVM.NewtonControl()
# c.damp_growth=1.1
c.verbose = verbose
c.tol_round = 1.0e-10
c.max_round = 3
c.damp_initial = 0.01
c.damp_growth = 2
inival = solve(sys; inival = 0, control = c)
vstep = vmax / (nsteps - 1)
c.damp_initial = 1
function rundlcap(dir)
volts = zeros(0)
caps = zeros(0)
volt = 0.0
sol = inival
for iv in 1:nsteps
apply_voltage!(sys, volt)
c.damp_initial = 1
sol = solve(sys; inival = sol, control = c)
Q = calc_QBL(sol, sys)
apply_voltage!(sys, volt + dir * δV)
c.damp_initial = 1
sol = solve(sys; inival = sol, control = c)
Qδ = calc_QBL(sol, sys)
push!(caps, (Q - Qδ) / (dir * δV))
push!(volts, volt)
volt += dir * vstep
end
return volts, caps
end
Vf, Cf = rundlcap(1)
Vr, Cr = rundlcap(-1)
return vcat(reverse(Vr), Vf), vcat(reverse(Cr), Cf)
end
dlcapsweep_equi (generic function with 1 method)
7. The pressure Poisson equation
An alternative possibility to handle the pressure has been introduced in
Starting with the momentum balance in mechanical equilibrium
$$ \nabla p = -q\nabla \varphi$$
by taking the divergence on both sides of the equation, one derives the pressure Poisson problem
$$\begin{aligned} -\Delta p &= \nabla\cdot q\nabla \varphi & \text{in}\; \Omega\\ p&=p_{bulk} & \text{on}\; \Gamma_{bulk}\\ (\nabla p + q\nabla \varphi)\cdot \vec n &=0 & \text{on}\; \partial\Omega\setminus\Gamma_{bulk}\\ \end{aligned}$$
The bulk Dirichlet boundary condition for the pressure is necessary to make the solution unique. It is reasonable to set the \(\varphi\) to a bulk value at \(\Gamma_{bulk}\) as well, and to calculate \(p_{bulk}\) from the molar fraction sum constraint.
function spacecharge!(f, u, node, data)
φ = u[iφ]
p = u[ip]
return f[iφ] = -spacecharge(u[iφ], u[ip], data)
end;
function poisson_and_p_flux!(f, u, edge, data)
f[iφ] = (1.0 + data.χ) * data.ε_0 * (u[iφ, 1] - u[iφ, 2])
q1 = spacecharge(u[iφ, 1], u[ip, 1], data)
q2 = spacecharge(u[iφ, 2], u[ip, 2], data)
return f[ip] = (u[ip, 1] - u[ip, 2]) + (u[iφ, 1] - u[iφ, 2]) * (q1 + q2) / (2 * data.pscale)
end;
function create_equilibrium_pp_system(
grid,
data::EquilibriumData = EquilibriumData();
Γ_bulk = 0
)
update_derived!(data)
sys = VoronoiFVM.System(
grid; data = data, flux = poisson_and_p_flux!,
reaction = spacecharge!, species = [iφ, ip]
)
if Γ_bulk > 0
logysum!(y, p) = y[1] = log(ysum(0.0, p[1], data))
res = nlsolve(logysum!, [0.0]; autodiff = :forward, method = :newton, xtol = 1.0e-10, ftol = 1.0e-20)
boundary_dirichlet!(sys, iφ, Γ_bulk, 0.0)
boundary_dirichlet!(sys, ip, Γ_bulk, res.zero[1])
end
return apply_voltage!(sys, 0)
end;
function ysum(sys, sol)
data = sys.physics.data
n = size(sol, 2)
sumy = zeros(n)
for i in 1:n
sumy[i] = ysum(sol[iφ, i], sol[ip, i], data)
end
return sumy
end
ysum (generic function with 2 methods)
8. Tests
begin
SI(x) = Float64(Unitful.ustrip(Unitful.upreferred(1 * x)))
const V = SI(Unitful.V)
const eV = SI(Unitful.eV)
const nm = SI(Unitful.nm)
const cm = SI(Unitful.cm)
const μF = SI(Unitful.μF)
end
1.0e-6
elydata = ElectrolyteData(
c_bulk = fill(0.01 * ufac"mol / dm^3", 2),
κ = zeros(2)
)
ElectrolyteData(2, 0, 3, 4, [2.0e-9, 2.0e-9], [1, -1], 0.0180153, [0.0180153, 0.0180153], 1.805054151624549e-5, [1.805054151624549e-5, 1.805054151624549e-5], [0.0, 0.0], [10.0, 10.0], 0.0, 0.0, 2, 0.0, 1, 298.15, 2478.957029602388, 96485.33212331001, 78.49, 8.8541878128e-12, 1.0e9, false, :μex, true, [1.805054151624549e-5, 1.805054151624549e-5, 1.0, 0.0], 0.0, :DGL)
dlcap_exact = 0.22846691848825248
0.22846691848825249
@test dlcap0(elydata) ≈ dlcap_exact
Test Passed
begin
equidata = EquilibriumData()
set_molarity!(equidata, 0.01)
equidata.χ = 78.49 - 1
end
77.49
@test dlcap0(equidata) |> unitfactor ≈ dlcap_exact
Test Passed
@test dlcap0(EquilibriumData(elydata)) ≈ dlcap_exact
Test Passed
begin
Vmax = 2 * V
L = 20nm
hmin = 0.05 * nm
hmax = 0.5 * nm
X = ExtendableGrids.geomspace(0, L, hmin, hmax)
grid = ExtendableGrids.simplexgrid(X)
data = EquilibriumData(elydata)
end
EquilibriumData(2, 298.15, 4.1164049935e-21, 0.0, 1.0e9, 0.0, 3.3362659810399997e28, 2.9973629371369076e-29, 77.49, [1, -1], [0, 0], 6.02214076e24, [6.02214076e24, 6.02214076e24], [0.0], 1.602176634e-19, 8.8541878128e-12, [2.9973629371369076e-29, 2.9973629371369076e-29], [0.0001805054151624549, 0.0001805054151624549], 0.9996389891696752, 0.02569257912108585)
sys_sy = create_equilibrium_system(grid, data)
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}( grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=103, ncells=102, nbfaces=2), physics = Physics(data=Main.var"workspace#2".EquilibriumData, flux=poisson_flux!, storage=default_storage, reaction=spacecharge_and_ysum!, ), num_species = 2)
sys_pp = create_equilibrium_pp_system(grid, data, Γ_bulk = 2)
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}( grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=103, ncells=102, nbfaces=2), physics = Physics(data=Main.var"workspace#2".EquilibriumData, flux=poisson_and_p_flux!, storage=default_storage, reaction=spacecharge!, ), num_species = 2)
inival = unknowns(sys_sy, inival = 0);
molarities = [0.001, 0.01, 0.1]
3-element Vector{Float64}: 0.001 0.01 0.1
function capscalc(sys, molarities)
result = []
for imol in 1:length(molarities)
if isa(sys.physics.data, EquilibriumData)
set_molarity!(sys.physics.data, molarities[imol])
t = @elapsed volts, caps = dlcapsweep_equi(sys, vmax = 1V, nsteps = 101)
else
sys.physics.data.c_bulk .= molarities[imol] * ufac"mol/dm^3"
t = @elapsed r = dlcapsweep(
sys,
voltages = range(-1, 1, length = 201)
)
volts = voltages(r)
caps = r.dlcaps
end
cdl0 = dlcap0(sys.physics.data)
@info "elapsed=$(t)"
push!(
result,
(
voltages = volts,
dlcaps = caps,
cdl0 = cdl0,
molarity = molarities[imol],
)
)
end
return result
end
capscalc (generic function with 1 method)
Algebraic pressure equation
result_sy = capscalc(sys_sy, molarities)
3-element Vector{Any}: (voltages = [-1.0000000000000007, -0.9900000000000007, -0.9800000000000006, -0.9700000000000006, -0.9600000000000006, -0.9500000000000006, -0.9400000000000006, -0.9300000000000006, -0.9200000000000006, -0.9100000000000006 … 0.9100000000000006, 0.9200000000000006, 0.9300000000000006, 0.9400000000000006, 0.9500000000000006, 0.9600000000000006, 0.9700000000000006, 0.9800000000000006, 0.9900000000000007, 1.0000000000000007], dlcaps = [1.6054456294094521, 1.6167384247496308, 1.6282615466951533, 1.640020213455884, 1.6520214461541727, 1.664274423724521, 1.6767906669992172, 1.6895840173747345, 1.7026703965759005, 1.7160673594509568 … 1.7160673594500686, 1.7026703965754564, 1.6895840173742904, 1.6767906669992172, 1.664274423724077, 1.6520214461546168, 1.640020213455884, 1.6282615466960415, 1.6167384247496308, 1.6054456294098962], cdl0 = 0.07224758324229108, molarity = 0.001) (voltages = [-1.0000000000000007, -0.9900000000000007, -0.9800000000000006, -0.9700000000000006, -0.9600000000000006, -0.9500000000000006, -0.9400000000000006, -0.9300000000000006, -0.9200000000000006, -0.9100000000000006 … 0.9100000000000006, 0.9200000000000006, 0.9300000000000006, 0.9400000000000006, 0.9500000000000006, 0.9600000000000006, 0.9700000000000006, 0.9800000000000006, 0.9900000000000007, 1.0000000000000007], dlcaps = [1.5431651974693317, 1.5531651801965474, 1.5633745223961881, 1.5737978182785994, 1.5844387601986476, 1.5953004223328016, 1.6063856678210087, 1.6176976474433502, 1.629240344612537, 1.6410191116280615 … 1.6410191116280615, 1.629240344612537, 1.6176976474433502, 1.6063856678205646, 1.5953004223332456, 1.5844387601990917, 1.5737978182785994, 1.5633745223961881, 1.5531651801969915, 1.5431651974688876], cdl0 = 0.22846691848825246, molarity = 0.01) (voltages = [-1.0000000000000007, -0.9900000000000007, -0.9800000000000006, -0.9700000000000006, -0.9600000000000006, -0.9500000000000006, -0.9400000000000006, -0.9300000000000006, -0.9200000000000006, -0.9100000000000006 … 0.9100000000000006, 0.9200000000000006, 0.9300000000000006, 0.9400000000000006, 0.9500000000000006, 0.9600000000000006, 0.9700000000000006, 0.9800000000000006, 0.9900000000000007, 1.0000000000000007], dlcaps = [1.487924343455127, 1.4968306876359527, 1.50590131135786, 1.5151449781125592, 1.5245703702571056, 1.534185754234585, 1.5439986856011778, 1.554015788434171, 1.564242639701785, 1.5746837819499149 … 1.5746837819494708, 1.564242639701785, 1.554015788434171, 1.543998685602066, 1.534185754235029, 1.5245703702579938, 1.5151449781125592, 1.50590131135786, 1.4968306876355086, 1.4879243434542389], cdl0 = 0.7224758324229108, molarity = 0.1)
Pressure poisson problem
result_pp = capscalc(sys_pp, molarities)
3-element Vector{Any}: (voltages = [-1.0000000000000007, -0.9900000000000007, -0.9800000000000006, -0.9700000000000006, -0.9600000000000006, -0.9500000000000006, -0.9400000000000006, -0.9300000000000006, -0.9200000000000006, -0.9100000000000006 … 0.9100000000000006, 0.9200000000000006, 0.9300000000000006, 0.9400000000000006, 0.9500000000000006, 0.9600000000000006, 0.9700000000000006, 0.9800000000000006, 0.9900000000000007, 1.0000000000000007], dlcaps = [1.6053696728359768, 1.616661957323906, 1.6281845565306874, 1.6399426876914092, 1.6519433710473486, 1.6641957847953748, 1.6767114492113322, 1.689504205306669, 1.7025899746241357, 1.7159863120124186 … 1.7159863120110863, 1.7025899746236917, 1.689504205306669, 1.6767114492113322, 1.6641957847953748, 1.6519433710464604, 1.6399426876914092, 1.6281845565306874, 1.6166619573243501, 1.6053696728359768], cdl0 = 0.07224758324229108, molarity = 0.001) (voltages = [-1.0000000000000007, -0.9900000000000007, -0.9800000000000006, -0.9700000000000006, -0.9600000000000006, -0.9500000000000006, -0.9400000000000006, -0.9300000000000006, -0.9200000000000006, -0.9100000000000006 … 0.9100000000000006, 0.9200000000000006, 0.9300000000000006, 0.9400000000000006, 0.9500000000000006, 0.9600000000000006, 0.9700000000000006, 0.9800000000000006, 0.9900000000000007, 1.0000000000000007], dlcaps = [1.5431581779439263, 1.553158121668119, 1.5633674242052642, 1.5737906797639312, 1.584431580668344, 1.5952932010696586, 1.6063784040536433, 1.6176903403488652, 1.6292329932814376, 1.641011715070917 … 1.6410117150704728, 1.6292329932809935, 1.6176903403493093, 1.6063784040540874, 1.5952932010692145, 1.5844315806679, 1.5737906797639312, 1.56336742420482, 1.553158121668119, 1.5431581779443704], cdl0 = 0.22846691848825246, molarity = 0.01) (voltages = [-1.0000000000000007, -0.9900000000000007, -0.9800000000000006, -0.9700000000000006, -0.9600000000000006, -0.9500000000000006, -0.9400000000000006, -0.9300000000000006, -0.9200000000000006, -0.9100000000000006 … 0.9100000000000006, 0.9200000000000006, 0.9300000000000006, 0.9400000000000006, 0.9500000000000006, 0.9600000000000006, 0.9700000000000006, 0.9800000000000006, 0.9900000000000007, 1.0000000000000007], dlcaps = [1.4879243433880696, 1.4968306875720039, 1.505901311292579, 1.51514497804639, 1.524570370194489, 1.5341857541719683, 1.5439986855363408, 1.554015788369334, 1.564242639637392, 1.5746837818828574 … 1.5746837818828574, 1.564242639636948, 1.554015788369334, 1.5439986855354526, 1.5341857541719683, 1.5245703701936009, 1.51514497804639, 1.505901311292135, 1.4968306875720039, 1.4879243433885136], cdl0 = 0.7224758324229108, molarity = 0.1)
Poisson Nernst-Planck from LiquidElectrolytes
function pnp_bcondition(f, u, bnode, data::ElectrolyteData)
(; iϕ, Γ_we, ϕ_we) = data
boundary_dirichlet!(f, u, bnode, species = iϕ, region = Γ_we, value = ϕ_we)
return bulkbcondition(f, u, bnode, data)
end
pnp_bcondition (generic function with 1 method)
sys_pnp = PNPSystem(grid; bcondition = pnp_bcondition, celldata = elydata)
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}( grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=103, ncells=102, nbfaces=2), physics = Physics(data=LiquidElectrolytes.ElectrolyteData, flux=pnpflux, storage=pnpstorage, reaction=_pnpreaction, breaction=pnp_bcondition, ), num_species = 4)
result_pnp = capscalc(sys_pnp, molarities)
3-element Vector{Any}: (voltages = [-1.0, -0.99, -0.98, -0.97, -0.96, -0.95, -0.94, -0.93, -0.92, -0.91 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0], dlcaps = [1.6059847397498217, 1.6172895790589337, 1.6288249802798305, 1.6405962480314784, 1.6526105132363966, 1.664877079909921, 1.6774075984216097, 1.6902160325571458, 1.703318407355603, 1.7167323510358656 … 1.7165966087828721, 1.703185871697599, 1.6900865214530825, 1.6772809426024438, 1.6647531290603368, 1.6524891391211938, 1.6404773460942934, 1.6287084689103892, 1.6171753969107527, 1.605872841508038], cdl0 = 0.0722475832422911, molarity = 0.001) (voltages = [-1.0, -0.99, -0.98, -0.97, -0.96, -0.95, -0.94, -0.93, -0.92, -0.91 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0], dlcaps = [1.5437027401388193, 1.553714059565614, 1.5639350174501132, 1.5743701532011656, 1.585023116450479, 1.5958969580598392, 1.6069945430263743, 1.6183190533602954, 1.6298745338794163, 1.6416664263640968 … 1.6415473149899995, 1.6297578193480433, 1.6182046727397648, 1.606882449771696, 1.5957871169547388, 1.5849154982872093, 1.574264729065078, 1.5638317544208746, 1.5536129170889978, 1.5436036676863552], cdl0 = 0.22846691848825249, molarity = 0.01) (voltages = [-1.0, -0.99, -0.98, -0.97, -0.96, -0.95, -0.94, -0.93, -0.92, -0.91 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0], dlcaps = [1.488410003780416, 1.4973251551175792, 1.5064050640933857, 1.5156584988273991, 1.5250941276301333, 1.5347201849191805, 1.5445441801809068, 1.554572681734534, 1.5648112081212417, 1.5752642480171275 … 1.57515864327884, 1.564707767669482, 1.5544713653525832, 1.5444449380064285, 1.5346229564272562, 1.5249988419174798, 1.5155650769083095, 1.5063134206405593, 1.4972352024900104, 1.4883216552963319], cdl0 = 0.7224758324229109, molarity = 0.1)
Poisson-Boltzmann from LiquidElectrolytes
function pb_bcondition(f, u, bnode, data)
(; Γ_we, Γ_bulk, ϕ_we, iϕ, ip) = data
## Dirichlet ϕ=ϕ_we at Γ_we
boundary_dirichlet!(f, u, bnode, species = iϕ, region = Γ_we, value = ϕ_we)
boundary_dirichlet!(f, u, bnode, species = iϕ, region = Γ_bulk, value = data.ϕ_bulk)
return boundary_dirichlet!(f, u, bnode, species = ip, region = Γ_bulk, value = data.p_bulk)
end
pb_bcondition (generic function with 1 method)
sys_pb = PBSystem(grid; celldata = deepcopy(elydata), bcondition = pb_bcondition)
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}( grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=103, ncells=102, nbfaces=2), physics = Physics(data=LiquidElectrolytes.ElectrolyteData, flux=pbflux, storage=default_storage, reaction=pbreaction, breaction=pb_bcondition, ), num_species = 4)
result_pb = capscalc(sys_pb, molarities)
3-element Vector{Any}: (voltages = [-1.0, -0.99, -0.98, -0.97, -0.96, -0.95, -0.94, -0.93, -0.92, -0.91 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0], dlcaps = [1.6059847397675853, 1.617289579085579, 1.6288249802798305, 1.6405962480359193, 1.6526105132408375, 1.6648770798965984, 1.6774075984216097, 1.6902160325615867, 1.7033184073644847, 1.7167323510358656 … 1.7165966087784312, 1.7031858717020398, 1.6900865214530825, 1.6772809426024438, 1.6647531290470141, 1.6524891391256347, 1.6404773461031752, 1.6287084689015074, 1.61717539689743, 1.6058728415213608], cdl0 = 0.0722475832422911, molarity = 0.001) (voltages = [-1.0, -0.99, -0.98, -0.97, -0.96, -0.95, -0.94, -0.93, -0.92, -0.91 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0], dlcaps = [1.5437027401965508, 1.5537140596144638, 1.5639350174456723, 1.5743701531567567, 1.5850231164460382, 1.5958969580509574, 1.6069945430308152, 1.6183190533691771, 1.6298745338749754, 1.6416664263640968 … 1.6415473149855586, 1.6297578193391615, 1.6182046727397648, 1.606882449771696, 1.5957871169547388, 1.5849154982650049, 1.5742647290473144, 1.563831754407552, 1.5536129170712343, 1.5436036676597098], cdl0 = 0.22846691848825249, molarity = 0.01) (voltages = [-1.0, -0.99, -0.98, -0.97, -0.96, -0.95, -0.94, -0.93, -0.92, -0.91 … 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.0], dlcaps = [1.4884100039180836, 1.4973251551486655, 1.5064050640933857, 1.5156584988496036, 1.5250941276301333, 1.534720184941385, 1.544544180167584, 1.554572681730093, 1.5648112081212417, 1.5752642480082457 … 1.5751586432743991, 1.564707767669482, 1.5544713653437015, 1.5444449380019876, 1.5346229564006109, 1.524998841908598, 1.5155650769171913, 1.5063134206805273, 1.4972352025965918, 1.488321655291891], cdl0 = 0.7224758324229109, molarity = 0.1)
Result comparison
function resultcompare(r1, r2; tol = 1.0e-3)
for i in 1:length(r1)
for f in fieldnames(typeof(r1[i]))
if !isapprox(r1[i][f], r2[i][f]; rtol = tol)
return false
end
end
end
return true
end
resultcompare (generic function with 1 method)
@test resultcompare(result_pp, result_sy; tol = 5.0e-3)
Test Passed
@test resultcompare(result_pb, result_pp; tol = 5.0e-3)
Test Passed
@test resultcompare(result_pp, result_pnp; tol = 5.0e-3)
Test Passed
@test resultcompare(result_pb, result_pnp; tol = 1.0e-10)
Test Passed
Result plot
Compare with Fig 4.2 of Fuhrmann (2015)
capsplot (generic function with 1 method)